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ABSTRACT 
A numerical study of the flow in and heat transfer across a vertical cavity containing pure water when the 
aspect ratio of the cavity is low, i.e. 1 or less, has been undertaken. One vertical wall of the cavity is kept at 
a temperature that is below the freezing point of water while the opposite wall is kept at a temperature that is 
above this freezing temperature. Ice therefore forms in part of the cavity, the conditions being such that there 
can be significant natural convection in the water. The upper surface of the cavity is open i.e. the water has a 
free surface, heat transfer from this surface being assumed negligible. The lower surface of the cavity is 
assumed to be adiabatic. Only the steady state has been considered here. It has been assumed that the flow is 
laminar and two-dimensional and that liquid and solid properties are constant except for the water density 
change with temperature which gives rise to the buoyancy forces. The governing equations have been written 
in dimensionless form and these equations have been solved using a finite element-based procedure in which 
the position of the solid-liquid interface is obtained using an iterative approach. Solutions have been 
obtained for modified Rayleigh numbers of between 103 and 108 for various degrees of under-cooling and for 
cavity aspect ratios of between 0.25 and 1. The density inversion that occurs with water has been shown to 
have a large effect on the steady state freezing of water in a cavity. The aspect ratio of the cavity has also been 
shown to have a significant influence on the results when the aspect ratio is less than 0.5. 
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NOMENCLATURE 
A = Aspect ratio, H′/W′ 
a = Coefficient in density-temperature relation 
c = Specific heat 
g = Gravitational acceleration 
H' = Height of cavity 
k = Thermal conductivity 
kr = Ratio of solid to liquid thermal conductivities 
Mi = Mean Nusselt number based on W′ 
n = n'/W′ 
n' = Co-ordinate measured normal to a surface 
Pr = Prandtl number 
q = Mean heat transfer rate 
Ra = Modified Rayleigh number based on W′ 
S = S'/W′ 
S' = Local distance from hot wall to ice/water interface 
T = Dimensionless temperature 
T′ = Temperature 
T'c = Temperature of cold surface 
T'F = Solidification temperature 
TH = Dimensionless temperature of hot wall 
T′H = Temperature of hot wall 
TM = Dimensionless temperature of maximum density 
T′M = Temperature of maximum density 

u = Dimensionless velocity component in x direction 
u' = Velocity component in x' direction 
v = Dimensionless velocity component in y direction 
v' = Velocity component in y' direction 
W' = Width of cavity 
x = Dimensionless x' co-ordinate 
x' = Horizontal co-ordinate position 
y = Dimensionless y′ co-ordinate 
y' = Vertical co-ordinate position 
Greek symbols 
α = Thermal diffusivity 
Δ = Mean dimensionless liquid layer thickness 
v = Kinematic viscosity 
ρ = Density 
ρM = Maximum density 
ψ = Dimensionless stream function 
ψ' = Stream function 
ω = Dimensionless vorticity 
ω′ = Vorticity 
Subscripts 
l = Liquid 
s = Solid 
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INTRODUCTION 

The present study is concerned with the flow in and heat transfer across a vertical rectangular 
cavity containing pure water. One of the vertical walls of the cavity is kept at a temperature that is 
below the freezing point of water, while the opposite wall is kept at a temperature that is above 
this freezing temperature. As a result, ice forms in part of the cavity, the conditions being such that 
there can be significant natural convection in the unfrozen water. The upper surface of the cavity 
is open, i.e. the water has a free surface. This upper surface has been assumed to remain flat and 
the heat transfer from it has been assumed to be negligible. The lower surface of the enclosure has 
been assumed to be adiabatic. The flow situation is thus as shown in Figure J. Only the steady 
state has been considered here, i.e. the evolution of the flow with time from some prescribed 
initial state has not been considered. Attention has been restricted to cavities with relatively low 
aspect ratios, i.e aspect ratios of 1 or less. 

There have been a number of previous studies of solidification and melting of liquids in a 
cavity. Almost all of these studies have, however, been concerned with the evolution of the flow 
with time and have not been concerned with a detailed study of the effects of the various 
governing parameters on the final steady state for the case where there is under-cooling. A review 
of much of this work is given by Yao and Prusa1 and Fukusako and Yamada2. Experimental and 
numerical studies of the particular case of the freezing of pure water in a rectangular enclosure are 
given by Braga and Viskanta3 and de Vahl Davis et al.4 respectively. These studies also provide 
reviews of past work on the subject. A numerical study of steady state freezing of water is 
described by Oosthuizen5 but results are, basically, only given for a square cavity. These studies 
all indicate that the density maximum that occurs near the freezing point with water may play an 
important role in the freezing of water in a rectangular enclosure. There have been a number of 
studies of natural convection in water in a cavity without freezing under such conditions that this 
density maximum is important, (e.g. see references 6 to 9, these papers also containing reviews of 
past work in this field). Several of these studies showed that quite sharp changes in the flow 
pattern in the cavity can occur as the result of relatively small changes in the wall temperatures 
when these temperatures are near the maximum density temperature. 
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Existing studies have not not given much consideration to the final steady state and have not 
considered a wide range of governing parameters. It was for this reason that the present study was 
undertaken. 

GOVERNING EQUATIONS AND SOLUTION PROCEDURE 

It has been assumed that the flow is steady, laminar and two-dimensional and that the liquid and 
solid properties are constant except for the water density change with temperature which gives 
rise to the buoyancy forces, this being treated by assuming a quadratic type relationship, i.e. by 

(ρM - ρ)/ρ = a(T' - T'M)2 (1) 
the subscript M referring to conditions at the temperature of maximum density. This equation 
provides a good fit to the experimentally observed variation of the density of water with 
temperature between approximately 0°C and 10°C. 

The solution for the water, in which the natural convection has been assumed to be important, 
has been obtained in terms of the stream function and vorticity defined, as usual, by: 

The prime (') denotes a dimensional quantity. The co-ordinate system used is shown in Figure 1. 
The following dimensionless variables have then been defined: 

ψ = ψ'/α , ω = ω ' W ' 2 / α 
T = (T′ - T'F)/(T'H - T'c) (3) 

where α = kl/ρ c is the thermal diffusivity of the water. 
In terms of these dimensionless variables, the governing equations for the liquid flow are: 

where Ra * is the modified Rayleigh number defined by: 

Ra* = ag W'3(TH' - Tc')2/υα. (7) 

The equation governing the temperature distribution in the solid phase, i.e. the ice, is: 

The boundary conditions on the solution are: 
On all walls: 
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At x: = 0: 
T = TH 

T = Tc(= TH -1) 
On the bottom surface: 

where n is the co-ordinate measured normal to the surface considered. On the top surface, which 
is assumed to remain flat: 

On the interface between the water and ice, the following conditions apply: 

where the subscripts l and s refer to conditions on the liquid and solid sides of the interface 
respectively. The condition on temperature at the interface has been obtained by noting that only 
the steady state is being considered here. 

The above dimensionless equations, subject to the boundary conditions, have been solved 
using a finite element procedure. The solution is iterative in nature. The position of the solid-
liquid interface is first guessed and the element distributions in the solid and liquid regions are 
selected, nodal points being selected to lie along solid-liquid interface. The solution is then started 
and, as it progresses, the interface position is locally modified according to the difference between 
the calculated rates of heat transfer at the interface on the solid and liquid sides, the element 
shapes being adaptively modified to follow the changing interface shape. The solution is 
continued until a converged solution is obtained. 

Beside the streamline patterns in the cavity, the main results that will be presented here are the 
mean Nusselt number, Nu, based on the overall temperature difference and on the full width of the 
enclosure and the dimensionless mean liquid layer thickness Δ. These are defined by: 

and 

The grid independence of the results was established by carrying out calculations for the same 
conditions for different numbers and distributions of elements. 

RESULTS 

The solution has the following parameters: 
• The modified Rayleigh number, Ra*; 
• the Prandtl number, Pr; 
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• the aspect ratio of the rectangular cavity, A; 
• the ratio of the thermal conductivity of the frozen material to that of the unfrozen material, kr; 
• the dimensionless temperature of the hot wall, TH; 
• the dimensionless temperature at which the maximum density occurs, TM. 

Attention has here been restricted to a Prandtl number of 11 and a conductivity ratio, kr, of 4. 
Solutions have been obtained for modified Rayleigh numbers of between 103 and 108 for cavity 
aspect ratios of between 0.25 and 1 for various degrees of under-cooling i.e. for various values of 
TH since TC = 1 - TH. The value of TM basically will be determined by the difference between the 
hot and cold wall temperatures because (T'M - T'F) is approximately 4°C for water. Results will 
only be presented here for TM equal 0.4, these results being typical of those obtained at all values 
of TM. This value of TM corresponds, physically, to a (T'H -T'C) value of 10°C. Physically, then, 
the different values of the modified Rayleigh number considered here will correspond to different 
sizes of cavity. 

The effect of aspect ratio and modified Rayleigh number on the streamline pattern and the 
shape of the ice-water interface will first be considered. Figures 2 and 3 and Figures 4 and J show 
typical streamline patterns and ice-water interface shapes for Ra* values of 106and 107 for cavity 
aspect ratios of 1 and 0.5 for various values of TH while Figure 6 show typical patterns and 
interface shapes for a cavity with an aspect ratio of 0.25 for a Ra* value of 107. It will be recalled 
that the present results are for TM equals 0.4. When TH is less than this value the flow basically 
consists of a single vortex which involves flow down the hot wall and up the interface. When TH 
is increased above TM, a second vortex associated with flow up the hot wall develops. The strength 
of this vortex then grows rapidly with increasing TH while the strength of the original vortex 
decreases. It will be seen that the value of TH at which the second vortex starts to become 
important decreases with increasing Ra*. It will also be seen that with a cavity aspect ratio of I, 
the clockwise-rotating vortex tends to be swept into the upper portion of the cavity as TH is 
increased leading to a relative complex interface shape whereas at a cavity aspect ratio of 0.25, the 
two vortices remain next to each other. de Vahl Davis et al.4 presented two sets of results, in 
which the density maximum was taken into account, for the freezing of water in an enclosure. 
These results were for an enclosure with an aspect ratio of 1 and, although the values of the 
parameters used were not exactly the same as those used here, their solutions for long times (theirs 
was a transient solution) are very similar to those obtained here for the same dimensionless hot 
wall temperatures. 

The changes in flow pattern with increasing TH are further illustrated by the results given in 
Figure 7. This shows the variations of the maximum and minimum values of the dimensionless 
stream function with dimensionless hot wall temperature for various aspect ratios for Ra* = 107. 
Positive values of the stream function are associated with a downward flow along the hot wall and 
an upward flow along the interface (a counterclockwise rotating vortex) while negative values are 
associated with a flow up the hot wall and down ice-water interface (a clockwise rotating vortex). 
It will again be seen from this figure that that there is essentially no motion in the cavity at values 
of TH below about 0.2. It will also be seen that, at low wall temperatures, the flow is entirely down 
the hot wall and up the cold wall but that when the hot wall temperature increases above the 
maximum density temperature, this motion starts to decrease in intensity and there is relatively 
rapid rise in the motion associated with flow up the hot wall and down the interface at the higher 
cavity aspect ratios considered. 

At the lowest cavity aspect ratio considered, however, both vortices remain relatively weak and 
the strength of the clockwise rotating vortex grows relatively slowly with increasing 
dimensionless hot wall temperature. 

The mean heat transfer rate across the enclosure will be considered next. Figures 8 and 9 show 
the variations of mean Nusselt number with dimensionless hot wall temperature for various values 
of the modified Rayleigh number for cavities with aspect ratios of 1 and 0.5 respectively. It will 
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be seen from these figures that at low values of the dimensionless hot wall temperature, the 
Nusselt number is equal to the pure conduction value, this being given: 

Nu = TH+ kr (l -TH) (11) 

the conductivity ratio, kr it will be recalled, being taken as 4. As the dimensionless hot wall 
temperature increases, a point is reached at which the convective motion starts to become strong 
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enough to influence the heat transfer rate, and the Nusselt number starts to rise above the pure 
conduction value. At the higher modified Rayleigh numbers, this occurs at hot wall temperatures 
that are well below the maximum density temperature. Under these circumstances, then, the flow 
is predominantly down the hot wall and up the cold wall because of the density inversion. When 
the hot wall temperature rises above the maximum density temperature an opposite flow starts to 
develop, as discussed before, which tends to first decrease the heat transfer rate. However, with 
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further increase in hot wall temperature, this opposite flow, which involves flow up the hot wall 
and down the cold wall, increases in intensity and becomes dominant bringing about a rise in 
Nusselt number with increasing hot wall temperature. The dimensionless wall temperature at 
which the convective motion starts to influence the Nusselt number increases with decreasing 
modified Rayleigh number, and at Ra* = 105 the mean heat transfer rate remains essentially equal 
to the conduction up to the highest value of TH considered. The effect of the governing parameters 
on the mean Nusselt number is further illustrated by the results given in Figure 10 which shows 
the variation of Nu with aspect ratio for various values of the dimensionless hot wall temperature 
for Ra* = 107. It will be seen that the aspect ratio only starts to have a significant effect on the 
results when A < 0.5. 

Attention will, lastly, be given to the mean dimensionless liquid layer thickness, Δ. Figures 11 
and 12 show the variations of this dimensionless liquid layer thickness with dimensionless hot 
wall temperature for various values of the modified Rayleigh number for cavities with aspect 
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ratios of 1 and 0.5 respectively. It will be seen from these figures that at low values of the 
dimensionless hot wall temperature the value of Δ is equal to the pure conduction value, the 
dimensionless thickness being given by: 

As the dimensionless wall temperature is increased, the values of Δ eventually start to rise above 
the conduction value at the higher modified Rayleigh number considered. 

CONCLUSIONS 

The results obtained in the present study indicate that: 
(1) At small values of the dimensionless wall temperature, the convective motion in the water 

has a negligible effect on the heat transfer rate and the mean Nusselt number and the 
dimensionless liquid volume under these conditions is given by the solution for pure 
conduction. 

(2) The value of the dimensionless wall temperature at which the convective motion starts to 
influence the flow decreases with increasing modified Rayleigh and, for the conditions 
covered in the present study, the convective motion had no influence for Ra* < 105. 

(3) When the convective motion is important, the density inversion has a large effect on the 
motion in the water leading to a maximum and a minimum in the variation of mean Nusselt 
number with dimensionless wall temperature at a fixed modified Rayleigh number. 

(4) The aspect ratio of the cavity only begins to have a significant influence on the results when 
A is less than 0.5. 
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